TT-bot

Autonomous Mobile Robot for Indoor Object Collection

Gilhyun Ryou, Dept. of Electrical Engg., SNU
Youngwoo Sim, Dept. of Mechanical Engg., SNU
Seong Ho Yeon, Biomechatronics Group, MIT Media Lab
Sangok Seok, Robotics Group, NAVER LABS

*Research was conducted as a part of NAVER LABS Research Internship Program

Objective

- Develop an Autonomous Mobile Robotic System for Indoor Object Collection
 - Selectively collect target objects
 - Ball collection or warehouse management
- Compact Mechanical Design and Efficient End Effector for Indoor Operation
 - Small sized (0.4m x 0.4m) robotic platform
 - Robust collection process with suction-based end effector
- Deep Learning-based Perception and Motion Planning for better performance
 - Developed novel structure ADCN & GRL-planner to integrate Deep Learning

TT-bot

Small-sized

Standalone

Intelligent

Mobile Robot

Hardware – Object Collection

Object collection module with suction motor and reflector

Hardware – Design Principle of Collection

- Power Consumption is Optimized
- Coverage ~ 50 X 50 mm
- Duration < 2s
- The onset of motion is triggered by Rolling
- Torque is induced by Drag Force

Hardware – Design Principle of Collection

$$d \leq \frac{1}{2}a\tau^2 \tag{1}$$

$$T = \alpha r F_{drag} \tag{2}$$

$$v^2 \geq \frac{4d(I_b + m_b r^2)}{\alpha \tau \rho C_D \pi r^4} \tag{3}$$

Table 1 System parameters

Notation	Description	Simulation Value
m_b	Mass of a ball	2.7 g
I_b	Moment of inertia	$7.13 \times 10^{-7} \text{kg m}^2$
r	Radius of a ball	20 mm
ρ	Density of air	$1.29 \; \mathrm{kg} \mathrm{m}^{-3}$
v	Inhalation flow speed	$0.71 \; \mathrm{m s^{-1}}$
C_D	Drag coefficient	0.47
α	Correction factor	0.5
d	Valid range	40 mm
au	Valid time limit	2 s
T	Torque w.r.t. ground	

System verification with Computational Fluid Dynamics (CFD) simulation

Hardware – Variable Geometry Nozzle

- Install the inner membrane of latex material
- Control the air between membrane with piston controller
- Optimize inner radius to the target's size
- Minimize the loss of hydraulic pressure

Hardware – Platform

Mecanum Wheel for Holonomic movement

3-axis damper for simple suspension

- How to improve detection accuracy?
- How to deal with not precise enough virtual map?
- What is a best decision for various conditions?

Deep Learning Technology

Software - Overview

"Deep Learning"

Sensing

Perception

Decision Making

Planning

Actuation

Obstacle abundant environment & Limited resolution

Sensing

Perception

Decision Making

Planning

Actuation

Obstacle abundant environment & limited resolution

Highly precise objection classification algorithms are required!

Sensing

Perception

Decision Making

Planning

Actuation

Deep Convolutional Neural Network (DCNN)

Sensing

Perception

Decision Making

Planning

Actuation

DEEP CLASSIFIER COMPUTATION TIME COMPARISON Computation Time [ms] Processor batch 1 batch 4 batch 8 batch 16 Intel i5-5600U 1560 5800 11000 Jetson TX2 Max-P 1430 125 360 710 Jetson TX2 Max-N 110 315 590 1230 Nvidia GTX 960 30(40*) 92(100*) 175(195*) 340(365*) Nvidia Titan X 163(183*) 295(380*) 25(35*) 82(91*)

Stand-alone robotic system with DCNN?

→ Mobile GPU Jetson TX2

Sensing

Perception

Decision Making

Planning

Actuation

Framework for Asynchronous Deep Classification Network (ADCN)

To enhance Jetson TX2's performance, Asynchronously operate DCNN

Occupancy Map -> Hub for Sensor Data Integration

Sensing **Perception Decision Making Planning Actuation**

Problems in Motion Planning

Partially Observable & Multiple Target

→ Optimize robot's motion with

Reinforcement Learning

Sensing **Perception Decision** Making **Planning Actuation**

Reinforcement Learning

Input: Occupancy Map & Output: game pad command

Sensing

Perception

Decision Making

Planning

Actuation

Train the RL network on simulation

→ Reduce training time

Gaming Reinforcement Learning-Based Motion Planner (GRL-planner)

Sensing

Perception

Decision Making

Planning

Actuation

- Utilize occupancy map as an input of RL network and game pad controller signal as an output
- Available on various mobile platform (Holonomic, Differential)

Sensing

Perception

Decision Making

Planning

Actuation

Developed motor controller with Real Time Processer(MyRio)

Software – Overall Implementation

Software – Overall Implementation

RESEARCH WAS CONDUCTED AS A PART OF NAVER LABS UNDERGRADUATE INTERNSHIP PROGRAM.

Gilhyun Ryou 1.2 Youngwoo Sim 1.2 Seong Ho Yeon 1,3 Sangok Seok 1

- 1. NAVER LABS, Gyeonggi do, 13494, Korea
- 2. Seoul National University, Seoul, 08826, Korea
- 3. MIT Media Lab, Cambridge, 02139, USA

