

TUT Embedded Smile Detector
NVIDIA Jetson Developer Challenge

Feb 2018

Tampere University of Technology

➢ Pedram Ghazi
➢ Saboktakin Hayati
➢ Heikki Huttunen

Table of contents

Table of contents 1

Table of Figures 2

Introduction 3

2. Implementation 4
2.1 Implementation 4
2.2 Workflow 4
2.3 What did go wrong? 5
2.4 Environment and libraries 5

3. Conclusion 6

4. References 7

5. Annexes 8
5.1 Images 8
5.2 links 9

1

Table of Figures
- Figure 2.1: Sequence diagram
- Figure 5.1: During the demo
- Figure 5.2: Hardware

2

1. Introduction

The original Idea was to extend facial expression recognition to people's lives in order to prevent
threatening behaviours .
Here we describe some possible use cases:

I. Creating a system which is able to detect children's mood enables us to deploy a
framework for detecting a range of disease in children, e.g. if a child stares for a long
time during his break, It could be the sign of Epilepsy, Autism, Child abusement , Family
problems, etc.

II. Increasing people efficiency at work could be achieved by detecting their mood at work

and taking proper actions to prevent spread of bad feelings as much as possible.

III. In an interview situation, the interviewee can be monitored to detect his moods and level

of stress during the interview. So, the interviewers can act accordingly to interviewee’s
feelings.

3

2. Implementation

2.1 Implementation
For implementing this system on an embedded device namely Jetson TX2 we have used
multithreading since computational overheads from different modules of the system would
cause inconsistency in the execution flow of the application. The main thread is responsible for
handling the communication between different threads and modules. The general flow of the
program could be explained as this: firstly we are grabbing frames in the main thread and share
them between all threads using a data structure which all threads have access to it. Secondly,
we are detecting faces in the captured frames and assigning coordinates of the detected faces
to the shared data structure. Then the main thread is retrieving the prediction results of smiles in
those coordinates form the smile detector thread-which is making use of a deep learning
architecture namely mobilenet(Howard, A.G. 2017.)-. In the final step, we sketch the frame with
the prediction result added to it.
Handling multiple faces for smile detection was carried out by accessing coordinates of
rectangles of detected faces in a frame by the smile detector thread and assigning smile
probabilities to each rectangle. So while sketching the frame we will be able to draw the
rectangle and the prediction result alongside each other.
The communication between different threads are asynchronous, so they do not need to be
available at the same time. Since all threads are running almost at the same pace, we have a
stable system which is able to draw approximately 18 frames ps.

2.2 Workflow
The current workflow of the application could be described as in this sequence diagram.

Figure 2.1: Sequence diagram

4

2.3 What did go wrong?
We wanted to have a real time plot of diagrams depicting smile probabilities, We implemented
such a system which was working on a PC for one face but when we tested that on TX2 the
whole system froze due to lack of computation power in its CPU.

2.4 Environment and libraries
TX2 jetson owner is Tampere university of technology, signal processing lab and they lent us
the device for this project. We also used Logitech webcam c920 as a camera.

Tools(libraries, apps, softwares) Version Explanation

Ubuntu 16.04 LTS Operating system-64 bit.

Python 2.7.12 Programming language.

OpenCV 2.4.13.1

Library which is mainly use
for computer vision.

Keras 2.1.1 A neural network library.

Tensorflow 1.3.0 A library for dataflow
programming across a range
of tasks including machine
learning.

Numpy 1.11.0 A library for scientific
computing in python.

5

3. Conclusion

In conclusion, although we were not able to develop the project further due to lack of resources,
we gained the hands-on experience of implementing an idea from the scratch to a working
application.
As future works, we have plans as follows:
- Pretrain model with other datasets to make it more robust.
- Detecting other facial expressions than smiling.
- Consider experts' ideas to include diverse domain knowledge to make this application more
practical.
- Improve thread programming.
In the end, we would like to say thanks to our university teacher Heikki Huttunen for his support
during the project.

6

4. References

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H.,
2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861.

7

5. Annexes

5.1 Images

 Figure 5.1: Creating the demo

 Figure 5.2: Hardware

8

5.2 links

Link to the public repository: https://github.com/alitakin/JetsonChallenge

Link to the demo: https://www.youtube.com/watch?v=4JGatQOchFo

9

https://github.com/alitakin/JetsonChallenge
https://www.youtube.com/watch?v=4JGatQOchFo

